Problem 53

Suppose quantity s is a length and quantity t is a time. Suppose the quantities v and a are defined by $v=d s / d t$ and $a=d v / d t$. (a) What is the dimension of v ? (b) What is the dimension of the quantity a ? What are the dimensions of (c) $\int v d t$, (d) $\int a d t$, and (e) $d a / d t$?

Solution

Part (a)

Consider the dimensions of both sides of the equation.

$$
\begin{aligned}
{[v] } & =\left[\frac{d s}{d t}\right] \\
& =\frac{[d s]}{[d t]} \\
& =\frac{\mathrm{L}}{\mathrm{~T}} \\
& =\mathrm{LT}^{-1}
\end{aligned}
$$

Part (b)

Consider the dimensions of both sides of the equation and use the result from part (a).

$$
\begin{aligned}
{[a] } & =\left[\frac{d v}{d t}\right] \\
& =\frac{[d v]}{[d t]} \\
& =\frac{\mathrm{LT}^{-1}}{\mathrm{~T}} \\
& =\mathrm{LT}^{-2}
\end{aligned}
$$

Part (c)

Consider the dimensions of this expression and use the result from part (a).

$$
\begin{aligned}
{\left[\int v d t\right] } & =[v][t] \\
& =\left(\mathrm{LT}^{-1}\right) \cdot \mathrm{T} \\
& =\mathrm{L}
\end{aligned}
$$

Part (d)

Consider the dimensions of this expression and use the result from part (b).

$$
\begin{aligned}
{\left[\int a d t\right] } & =[a][t] \\
& =\left(\mathrm{LT}^{-2}\right) \cdot \mathrm{T} \\
& =\mathrm{LT}^{-1}
\end{aligned}
$$

Part (e)

Consider the dimensions of this expression and use the result from part (b).

$$
\begin{aligned}
{\left[\frac{d a}{d t}\right] } & =\frac{[d a]}{[d t]} \\
& =\frac{\mathrm{LT}^{-2}}{\mathrm{~T}} \\
& =\mathrm{LT}^{-3}
\end{aligned}
$$

